Imaging the proton with long-range correlations at the LHC

Kevin Dusling
North Carolina State University

January 15th, 2013

Structure of the atom

Joseph Thompson discovers electron in 1897: "corpuscles" of charge 1000 times smaller than the atom itself

1906 Nobel Prize in Physics

"... the atoms of the elements consist of a number of negatively electrified corpuscles enclosed in a sphere of uniform positive electrification ... " (1904)

Rutherford Scattering (1911)

Marsden

Geiger

 $r_{\text{gold}} \lesssim 27 \times 10^{-15} \text{ m}$ = 27 fm

Rutherford Nobel Prize in Chemistry 1908

Electron Scattering (1955)

Robert Hofstadter 1961 Nobel Prize in Physics

The proton is not a point particle; it has a finite size!

What resides in the proton?

1968: J.D. Bjorken predicts that if high-energy photons resolve point-like constituents then:

$$\nu W_2\left(\nu, Q^2\right) \to F_2\left(x\right)$$

Friedman Kendall

ndall Taylor

n Kendall Nobel Prize in Physics 1990

Answer: Point-like partons (a.k.a quarks)!

The age of HERA (1990s)

HERA's view of the proton

valence quarks
$$=\int u_v + d_v dx = 3$$

gluons $=\int g dx \gtrsim 30$

Internal structure of the proton

The proton cannot be though of as a static classical object.

It is made up of quanta that fluctuate into and out of existence:

Wee parton fluctuations time dilated on strong interaction time scales.

These long-lived gluons can further radiate smaller-x gluons ...

The rise at small x

This cannot continue to rise like this forever!

Criteria for Gluon Saturation

1. Transverse gluon density:
$$ho \sim rac{xG_A}{S_\perp} \sim rac{A\ xG}{A^{2/3}} \sim A^{1/3}\ xG$$

2. Recombination cross-section:
$$\sigma_{gg
ightarrow g} \sim rac{lpha_S}{Q^2}$$

3. Saturation Criteria: $ho\sigma_{gg o g}\gtrsim 1$

$$Q_s^2 \sim A^{1/3} xG \sim A^{1/3}x^{-0.3}$$

Saturation scale is a new momentum scale in problem

High Energy Landscape of QCD

Gluon Saturation

A large nucleus (A>1) results in a high occupation of gluons, $\rho \sim A^{1/3}$ and therefore the gluon-field should be classical as realized by McLerran & Venugopalan (1994). Basic Premise: Large-x partons serve as classical sources for smaller-x gluons.

Many-body high energy QCD: The Color Glass Condensate

Observables must be independent from how the large-x and small-x degrees of freedom are separated: Functional Renormalization Group equation (JIMWLK).

For reviews see:

McLerran, Lect. Notes Phys.583:291-334 (2002), arXiv:hep-ph/0104285

Gelis, Iancu, Jalilian-Marian, Venugopalan:

Ann. Rev. Nucl. Part. Sci. (2010), arXiv: 1002.0333

Power counting in QCD: multiparticle production

Low color charge density (min bias):

High color charge density (central):

Expect α_s^8 enhancement of "Glasma" graph! Is this seen in the data?

First LHC Discovery! (Sept. 2010)

These are ultra-rare events producing over 100 particles!

Anything interesting going on here?

First LHC Discovery! (Sept. 2010)

"Normal Event"

(b) CMS MinBias, $1.0 \text{GeV/c} < p_{_{T}} < 3.0 \text{GeV/c}$

High Multiplicity Event

(d) CMS N \geq 110, 1.0GeV/c<p $_{_{T}}<$ 3.0GeV/c

CMS Collaboration (Khachatryan, Vardan et al.) JHEP 1009 (2010) 091 arXiv:1009.4122 [hep-ex]

Particles That Flock: Strange Synchronization Behavior at the Large Hadron Collider

Scientists at the Large Hadron Collider are trying to solve a puzzle of their own making: why particles sometimes fly in sync

By Amir D. Aczel

Scientific American, February (2011).

The high-energy collisions of protons in the LHC may be uncovering "a new deep internal structure of the initial protons"

Frank Wilczek (Nobel Prize 2004)

Kinematic Variables

Anatomy of a proton-proton collision

Anatomy of a proton-proton collision

Systematics of the p+p ridge

Ridge persists to large rapidity separations:

Evidence for a semi-hard scale!

Both Jet and Ridge understood!

p+Pb pilot run (Sept. 2012)

p+Pb pilot run (Sept. 2012)

"Normal Event"

High Multiplicity Event

CMS Collaboration (Chatrchyan, Serguei et al.) Submitted to Physics Letters B arXiv:1210.5482 [nucl-ex]

physicsworld.com

Unexpected 'ridge' seen in CMS collision data again

Oct 31, 2012 @ 6 comments

LHC sees odd behavior in superhot particle soup

Coordinated motion observed in debris from lead-proton collisions

By Andrew Grant

Web edition: December 5, 2012 Print edition: January 12, 2013; Vol.183 #1 (p. 12)

Lead-proton collisions yield surprising effect in CMS experiment

CMS physicists have once again found a "ridge" in their data, this time in lead-proton collisions.

By Signe Brewster

MITnews

Lead-proton collisions yield surprising results

Unexpected data from the Large Hadron Collider suggest the collisions may be producing a new type of matter.

Anne Trafton, MIT News Office

November 27, 2012

DRUDGE REPORT

Data from Large Hadron Collider suggest collisions producing new type of matter...

After 19 years of marriage, husband discovers wife was once a man...

Systematics in p+Pb

Similar systematics BUT factor of 4 larger for same N_{trk} (i.e. density)

Understanding the Ridge

$$Q_0^2(\text{lead}) = N_{\text{part}}^{\text{Pb}} \cdot 0.168 \text{ GeV}^2$$

Like a bullet through a pane of glass:

CMS p+Pb data understood!

Understanding the Ridge

The origin of the ridge is a subtle form of quantum entanglement:

Cauchy-Schwarz Inequality:

$$\int d^2k_{\perp}\Phi_A^2(\mathbf{k}_T) \,\Phi_B(|\mathbf{p}_T - \mathbf{k}_T|) \,\Phi_B(|\mathbf{q}_T - \mathbf{k}_T|) \leq \int d^2k_{\perp}\Phi_A^2(\mathbf{k}_T) \,\Phi_B^2(|\mathbf{p}_T - \mathbf{k}_T|)$$

Equality satisfied if and only if: $\Phi(|\mathbf{p}_T + \mathbf{k}_T|) \propto \Phi(|\mathbf{q}_T + \mathbf{k}_T|)$

Expect collimation on very general grounds

Understanding the Ridge

Ratio of Peak to Pedestal: CY $\propto \frac{\int d^2k_\perp \Phi_A^2(\mathbf{k}_T) \Phi_B^2(|\mathbf{p}_T - \mathbf{k}_T|)}{\int d^2k_\perp \Phi_A^2(\mathbf{k}_T) \Phi_B(|\mathbf{p}_T - \mathbf{k}_T|) \Phi_B(|\mathbf{p}_T + \mathbf{k}_T|)}$

$$\begin{array}{c} \text{CY} \propto \frac{\Phi_B(Q_B)}{\Phi_B\left(\sqrt{2p_T^2+2Q_A^2-Q_B^2}\right)} \xrightarrow{\text{3 GeV}} \text{6 GeV} \\ \text{Pois N}_{\text{Part}}^{\text{Pbs}} = 6 & --- \\ \text{Pb: N}_{\text{Part}}^{\text{Pbs}} = 6 & --- \\ \text{Pb: N}_{\text{Part}}^{\text{Pbs}} = 22 & --- \\ \text{0.1} & 1 & 10 \\ I_T [\text{GeV}] & 10 \\ \end{array}$$

Collimation sensitive to detailed structure of nuclear wavefunction

News from ALICE and ATLAS:

ALICE and ATLAS manage to subtract the jet-contribution leaving behind the raw signal from the Glasma flux tube:

Analogous to:

Summary

The LHC has made a remarkable discovery of a novel collimation between two particles flying in opposite directions in ultra-rare high multiplicity events.

- 1. Is this the smoking gun for saturation?
- 2. Are we are imaging the decay of a QCD flux-tube or string?
- 3. Are we probing universal dynamics of the proton's wavefunction?

Backup

The Heavy-Ion Ridge

Dan Magestro, STAR, Hard Probes 2004 Jorn Putschke, STAR, Quark Matter 2006

The ridge phenomenon was first discovered in heavy-ion collisions.

In p+p we are seeing the intrinsic collimation from a single flux tube

Increasing transverse flow in p+p creates a discrepancy with data.

In A+A there are many such tubes each with an intrinsic correlation enhanced by flow

Yet, transverse flow is needed to explain identical measurements in Pb+Pb

Are we sure the A+A ridge is probing the nuclear wavefunction?

Heavy-Ion Ridge

The correlation is long range in rapidity. Causality dictates the correlation formed early.

Dumitru, Gelis, McLerran, Venugopalan, NPA810 (2008) 91-108. Dusling, Gelis, Lappi, Venugopalan, NPA836 (2010) 159-182. Ma, Wang, PRL 106 (2011) 162301.

Hydro calculation for p+Pb ridge

CGC + Hydro

B. Schenke, P. Tribedy, R. Venugopalan, arXiv:1206.6805, Phys. Rev. Lett. 108 (2012) 252301,

ATLAS Systematics

CMS Systematics

High multiplicity are b=0 collisions

Dumitru, Gelis, McLerran, Venugopalan, NPA810 91-108 (2008). Dusling, Fernandez-Fraile, Venugopalan NPA828 (2009) 161-177. Gelis, Lappi, McLerran, NPA828 (2009) 149-160.

$$k = \zeta \frac{\left(N_c^2 - 1\right) S_\perp Q_s^2}{2\pi}$$

$$\zeta = 0.155$$
 [Empirical]

$$\zeta = 0.2 - 1.5$$
 [Lattice]

Emprical: Tribedy, Venugopalan, NPA850 (2011) 136-156.
Lattice (CYM): Lappi, Srednyak, Venugopalan, JHEP01 (2010) 066.
Schenke, Tribedy, Venugopalan, arXiv:1206.6805

Predictions for p+Pb

